

### Regioselective Transformation of Octaethylporphyrin into a Phytoporphyrin Analogue

Michio Kunieda,<sup>†</sup> Yuji Mikata,<sup>‡</sup> and Hitoshi Tamiaki\*,<sup>†</sup>

Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, and KYOUSEI Science Center, Nara Women's University, Nara 630-8506, Japan

tamiaki@se.ritsumei.ac.jp

Received May 13, 2007



preferable localization of  $\pi$ -circuit

phytoporphyrin analogue

An octaethylporphyrin derivative, **1**, possessing an exo-fivemembered ring fused at the 13- and 15-positions was oxidized by osmium tetroxide to give two isomeric chlorins, **3** and **5**, possessing  $\beta$ , $\beta'$ -dihydroxy groups at the A- and C-rings, respectively. Single dehydration of 2,3-dihydroxychlorin **3** gave a mixture of 2- and 3-(1-hydroxyethyl)porphyrins **7**, while that of 12,13-dihydroxychlorin **5** resulted in the sole formation of 13<sup>1</sup>-hydroxyporphyrin **9**. The latter was modified smoothly to the phytoporphyrin analogue **2**, whose molecular skeleton was similar to that of naturally occurring chlorophylls possessing a 13<sup>1</sup>-oxo group fixed on an exo-five-membered ring.

Phytoporphyrin (upper right drawing in Figure 1) is one of the well-known semisynthetic porphyrins and is structurally characterized by the presence of the  $13^{1}$ -oxo group fixed on an exo-five-membered E-ring, similar to the molecular structures of naturally occurring photoactive chlorophylls (Chl's) (molecular structures of Chl's *a* and *c*<sub>1</sub>, upper left drawing in Figure 1).<sup>1</sup> The copresence of the  $13^{1}$ -oxo group<sup>2</sup> and E-ring in a cyclic tetrapyrrole has a significant effect on its optical properties; absorption bands of porphyrins<sup>3</sup> or chlorins<sup>4</sup> possessing a  $13^{1}$ -oxo group with the E-ring (for example, octaethylporphyrin (OEP) derivative **2**, lower drawing of Figure 1) shifted to a longer wavelength region than those possessing a flexible 13acetyl group without the E-ring, which is suitable for efficient





**FIGURE 1.** Molecular structures of naturally occurring Chl's *a* and  $c_1$  (upper left), phytoporphyrin (upper right), and synthetic porphyrins **1** and **2** (lower).

light-harvesting. Thus, porphyrin derivatives possessing an oxo group on the E-ring have attracted attention as good models of naturally occurring Chl's.

Several synthetic strategies for introducing the  $13^{1}$ -oxo group with the E-ring were reported.<sup>4,5</sup> In this paper we focus on a dihydroxylation of  $\beta$ , $\beta'$ -positions in a porphyrin by osmium tetroxide as a key step for synthesizing phytoporphyrin analogues. Dihydroxylation of porphyrin derivatives by OsO<sub>4</sub> is a useful method to modify the  $\beta$ -positions on the porphyrin macrocycle.<sup>6</sup> Typically, the reaction occurs at the  $\beta-\beta'$  bond (C2–C3, C7–C8, C12–C13, or C17–C18) of the porphyrin macrocycle, and the resulting osmate is cleaved by H<sub>2</sub>S gas to afford the corresponding  $\beta$ , $\beta'$ -dihydroxychlorin (*cis*-diol). Unsymmetric free-base porphyrins have basically 26  $\pi$ -electrons, in which a 22(or 18) $\pi$ -system including all the  $\pi$ -electrons (or all the  $\alpha$ , $\beta$ -carbon  $\pi$ -electrons) on a set of diagonal pyrroles (rings A and C or B and D) gives the compounds their

10.1021/jo071010m CCC: \$37.00 © 2007 American Chemical Society Published on Web 08/18/2007

<sup>\*</sup> To whom correspondence should be addressed. Fax: +81 77 561 2659.  $^{\dagger}$  Ritsumeikan University.

<sup>&</sup>lt;sup>‡</sup> Nara Women's University

<sup>(1) (</sup>a) Scheer, H. In *Light Harvesting Antennas in Photosynthesis*; Green, B. R., Parson, W. W., Eds.; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2003; pp 29–81. (b) Tamiaki, H.; Shibata, R.; Mizoguchi, T. *Photochem. Photobiol.* **2007**, *83*, 152–162.

<sup>(2)</sup> In this paper, the numbering of the positions in all the synthetic compounds is the same as that in the natural chlorophylls and does not follow the IUPAC-IUB nomenclature to avoid any confusion for readers (see also ref 3).

<sup>(3)</sup> Kunieda, M.; Nakato, E.; Tamiaki, H. J. Photochem. Photobiol., A: Chem. 2007, 185, 321–330.

<sup>(4)</sup> Laha, J. K.; Muthiah, C.; Taniguchi, M.; Lindsey, J. S. J. Org. Chem. 2006, 71, 7049–7052.

<sup>(5) (</sup>a) Fischer, H.; Laubereau, O. *Justus Liebigs Ann. Chem.* **1938**, *535*, 17–37. (b) Smith, K. M.; Lewis, W. M. *Tetrahedron, Suppl.* **1981**, 399–403.

<sup>(6) (</sup>a) Chang, C. K.; Sotiriou, C. J. Org. Chem. **1987**, *52*, 926–929. (b) Pandey, R. K.; Shiau, F. Y.; Sumlin, A. B.; Dougherty, T. J.; Smith, K. M. Bioorg. Med. Chem. Lett. **1992**, *2*, 491–496. (c) Pandey, R. K.; Isaac, M.; MacDonald, I.; Medforth, C. J.; Senge, M. O.; Dougherty, T. J.; Smith, K. M. J. Org. Chem. **1997**, *62*, 1463–1472. (d) Gerlach, B.; Brantley, S. E.; Smith, K. M. J. Org. Chem. **1998**, *63*, 2314–2320. (e) Chen, Y.; Medforth, C. J.; Smith, K. M. J. Org. Chem. **2001**, *66*, 3930–3939. (f) Tamiaki, H.; Kimura, S.; Kimura, T. Tetrahedron **2003**, *59*, 7423–7435.

# **JOC** Note

SCHEME 1. Dihydroxylation of 1 by OsO<sub>4</sub>



aromaticity and two  $\beta - \beta'$  double bonds of the other pyrrole rings are excluded from the aromatic  $\pi$ -system. The relatively isolated  $C\beta = C\beta'$  bonds are more reactive than those in the strongly conjugated pyrrole rings on the aromatic pathway.<sup>7</sup> To control the regioselectivity in OsO<sub>4</sub> oxidation at the  $\beta$ , $\beta'$ positions in a free-base porphyrin, a substituent effect at the peripheral position was reported to be useful; the pyrrole ring opposite a pyrrole ring possessing an electron-withdrawing group (acetyl and formyl groups) reacted with OsO<sub>4</sub>.<sup>6e</sup> The resulting cis-diols were readily modified to give a variety of  $\beta$ -substituted porphyrins.<sup>6a,c,d,f,8</sup> Typically, single and double dehydration of the  $\beta$ , $\beta'$ -dihydroxy- $\beta$ -ethylchlorin afforded (1hydroxyethyl)- and vinylporphyrins, respectively, which were further converted to acetyl and formyl compounds. Here we employed  $13^2$ , 15-cyclized OEP 1 as the substrate for the OsO<sub>4</sub> dihydroxylation and revealed that the unsymmetric molecular structure of **1** with the E-ring had its major  $\pi$ -circuit between the B- and D-rings, which induced the selective dihydroxylation: dihydroxylation of 1 occurred only at the  $\beta$ -positions of the A- or C-rings to afford cis-dihydroxychlorin 3 or 5 (Scheme 1). Moreover, we describe a new route for obtaining phytoporphyrin analogue 2 by chemical modification of regioisomer 5.

13<sup>2</sup>,15-Cyclized OEP **1**, prepared from OEP by three steps (see Scheme S1 in the Supporting Information), was treated with OsO<sub>4</sub> in CH<sub>2</sub>Cl<sub>2</sub> and successively by H<sub>2</sub>S gas to give a mixture of chlorins. The two major products were easily separated by flash silica gel column chromatography (FCC), yielding the first (1% Et<sub>2</sub>O/CH<sub>2</sub>Cl<sub>2</sub>) and second (3–4% Et<sub>2</sub>O/CH<sub>2</sub>Cl<sub>2</sub>) elutions. The separated products had the same molecular ion peak at 566 (*m*/*z*, FAB) corresponding to that of the dihydroxylated form of **1**, to be regioisomeric diols. Selective production of the two monoadducts from four possible  $\beta$ , $\beta'$ -dihydroxychlorins, **3–6** (Scheme 1), indicated that the two  $\beta$ – $\beta'$  double bonds were more reactive than the others. Their molecular structures were determined by their <sup>1</sup>H and <sup>1</sup>H–<sup>1</sup>H COSY/NOESY and <sup>1</sup>H–<sup>13</sup>C heteronuclear correlation NMR spectra in CDCl<sub>3</sub>; the first elution was 2,3-dihydroxy **3**, and the second was 12,13-dihydroxy **5**.<sup>9</sup> The isolated yields of **3** and **5** were 25% and 31%, respectively, and starting material **1** was recovered in 24% yield. Some minor pigments possessing chlorin-like absorption bands were detected during FCC separation, but their quantities were so small that the molecular structures could not be determined. Bacteriochlorin-like pigment (bisadduct) was also obtained in monitoring the reaction; the Qy band was observed at 717 nm, but it was degraded during the FCC purification. Thus, the present dihydroxylation of **1** selectively occurred at the A- and C-rings and showed that the C2=C3 and C12=C13 double bonds were more reactive in the oxidation than the C7=C8 and C17=C18 double bonds.

The E-ring in **1** affects the geometry of four pyrrole units (A–D-rings) to make an unsymmetric porphyrin  $\pi$ -system. Compared to highly symmetrical OEP, 13<sup>2</sup>,15-cyclized OEP derivative 1 composed of a relatively disordered tetrapyrrolic skeleton would change the aromatic pathway in its porphyrin moiety and show a different reactivity of the  $\beta - \beta'$  double bonds as in the present oxidation. A ring current study on a porphyrin<sup>7</sup> suggested that the 22 $\pi$ -circuit went on two pyrrole rings (6 $\pi$  × 2) possessing an inner hydrogen atom (NH), four meso-carbon atoms ( $\pi \times 4$ ), and two imide nitrogen atoms ( $\pi \times 2$ ) and their neighboring  $\alpha$ -carbon atoms ( $2\pi \times 2$ ) in the other two pyrrole rings as shown in two possible tautomers, 1a and 1b (red in Figure 2). From molecular modeling calculation (MM+/PM3)<sup>10</sup> of **1a** (two inner hydrogen atoms were on the A- and C-rings) and 1b (two inner hydrogen atoms on the B- and D-rings), the total energies of 1a and 1b were estimated as 14.5 and 6.8 kcal/ mol, respectively, indicating that the  $22\pi$ -system in **1b** would be preferable to that in **1a**. Preliminary X-ray crystallographic analysis also supported 1 to be a tautomer 1b: the angles of  $C\alpha$ -N-C $\alpha'$  in the B- and D-rings (ca. 111°) were wider than those in the A- and C-rings (ca. 106°), meaning that the two inner hydrogen atoms were located on the nitrogen atoms in the B- and D-rings.<sup>11</sup> In tautomer **1b**, the  $\beta - \beta'$  double bonds

<sup>(7) (</sup>a) Juselius, J.; Sundholm, D. *Phys. Chem. Chem. Phys.* **2000**, *2*, 2145–2151. (b) Steiner, E.; Fowler, P. W. *ChemPhysChem* **2002**, *3*, 114–116.

<sup>(8) (</sup>a) Li, G.; Dobhal, M. P.; Graham, A.; Shibata, M.; Zheng, G.; Kozyrev, A.; Pandey, R. K. *J. Org. Chem.* **2003**, *68*, 3762–3772. (b) Tamiaki, H.; Omoda, M.; Saga, Y.; Morishita, H. *Tetrahedron* **2003**, *59*, 4337–4350. (c) Kunieda, M.; Mizoguchi, T.; Tamiaki, H. *Tetrahedron* **2004**, *60*, 11349–11357. (d) Kunieda, M.; Tamiaki, H. *J. Org. Chem.* **2005**, *70*, 820–828.

<sup>(9)</sup> *cis*-Dihydroxychlorins **3** and **5** had two chiral centers on C2/3 and C12/13, respectively, and were racemates.

<sup>(10)</sup> Kureishi, Y.; Tamiaki, H. J. Porphyrins Phthalocyanines 1998, 2, 159–169.

## JOC Note

### SCHEME 2. Chemical Modifications of Dihydroxychlorins 3 and 5



on the A- and C-rings were relatively excluded from the  $22\pi$ system and were more reactive, which was consistent with the present regioselective dihydroxylation. The total energies of the resulting dihydroxychlorins were also distinguished in two groups: in the energetically minimized molecular structures obtained by MM+/PM3 calculations,<sup>10</sup> the total energies of each dihydroxychlorin were 30.0, 44.2, 28.2, and 43.5 kcal/mol for **3**, **4**, **5**, and **6**, respectively. The regioselectivity in the oxidation products might be due to thermodynamic control.



**FIGURE 2.** Two possible tautomers, **1a** and **1b**, conjugated by a  $22\pi$ -system (red).

Electronic absorption spectra of **3** and **5** in  $CH_2Cl_2$  were different: Soret and Qy maxima of 12,13-dihydroxy **5** were at 400 and 654 nm, respectively, which were red-shifted from those of 2,3-dihydroxy **3** (395 and 637 nm). The observed difference was clearly estimated from the absorption maxima calculated by ZINDO/S:<sup>12</sup> the energetically lowest electronic transitions of **5** and **3** were situated at 655 and 642 nm, respectively.

The *cis*-dihydroxy moiety in chlorins **3** and **5** can be used as a clue for modifying the  $\beta$ -substituent group in a porphyrin. Single dehydration of the *cis*-dihydroxy moiety in **3** by acidic treatment (Scheme 2) gave a mixture of 2- and 3-(1-hydroxy-ethyl)porphyrins **7** (73% yield).<sup>13</sup> The regioisomeric ratio of the

(12) Kunieda, M.; Tamiaki, H. J. Org. Chem. 2007, 72, 2443–2451. (13) Monodehydrated porphyrins 7 and 9 were racemates, 2<sup>1</sup>(or 3<sup>1</sup>)- and 13<sup>1</sup>-epimeric mixtures, respectively. mixture was determined as 2:1 by the integral ratio of its <sup>1</sup>H NMR spectral peaks. Oxidation of the 2- and 3-(1-hydroxyethyl) groups in regioisomerically mixed 7 was easily achieved by treatment of tetrapropylammonium perruthenate (TPAP) with NMO, affording a mixture of 2- and 3-acetylporphyrins 8 (63% yield, regioisomeric ratio of 2:1). In contrast to the slightly controlled regioselectivity in monodehydration of 2,3-diol 3, the regioisomeric 12,13-diol 5 showed an alternative modification as follows. The same treatment of 12,13-diol 5 as in  $3 \rightarrow$ 7 afforded two porphyrins as isolatable pigments on FCC, in which the first (minor, CH<sub>2</sub>Cl<sub>2</sub> only) and second (major, 2% Et<sub>2</sub>O/CH<sub>2</sub>Cl<sub>2</sub>) elutions showed a molecular ion peak at 546 and 548 (m/z, FAB), respectively. From <sup>1</sup>H and <sup>1</sup>H-<sup>1</sup>H NOESY NMR spectra of the second elution, the major product was assigned to be  $13^{1}$ -hydroxylated 9 (75% yield)<sup>13</sup> as one of two possible monodehydrated compounds, the 121- and 131-hydroxyporphyrins. <sup>1</sup>H NMR and UV-vis spectra of the first elution indicated that the minor product was 2 reported previously.<sup>3</sup> During the acidic treatment, dehydrogenation of 9 to 2 slightly occurred (7% yield). The single dehydration of 5 would proceed via a carbocation intermediate species. The present result affording the sole formation of 131-hydroxyporphyrin 9 indicated that the carbocation intermediate might be produced only on the conformationally restricted 13<sup>1</sup>-position (see Scheme S2 in the Supporting Information for the proposed mechanism of  $5 \rightarrow 9$ ). Secondary alcohol 9 was oxidized by combination of TPAP with NMO to give phytoporphyrin analogue 2 in 67% yield. Although the reported yield of 2 from OEP was lower (<0.4% by nine steps)<sup>3</sup> and some of the steps were inconvenient for a large-scale preparation, the present route would conveniently provide 2 because the total yield of 2 from OEP through the present  $1 \rightarrow 5 \rightarrow 9 \rightarrow 2$  was 5.7%, which is about 15-fold superior to that of the previous route.

 $13^2$ ,15-Cyclized OEP 1 could be modified to the phytoporphyrin analogue 2 with a similar skeleton of natural Chl molecules via a regioselective dihydroxylation of 1 to 5. The chemical modifications from 1 to 2 were smoothly achieved without any difficult procedures. Dihydroxychlorin 3 also has

<sup>(11)</sup> Senge, M. O.; Smith, K. M. Acta Crystallogr., C 1997, C53, 1314–1318.

potential to modify some  $\beta$ -substituted porphyrins possessing a vinyl, 1-hydroxyethyl, acetyl, or formyl group. In the molecular structures of naturally occurring chlorophyllous pigments, functional groups playing an important role in the molecular interactions are on the A- and C-rings so that the present dihydroxychlorins **3** and **5** and their derivatives would be good precursors of Chl models.

#### **Experimental Section**

Synthesis of 2,3-Dihydroxychlorin 3 and 12,13-Dihydroxychlorin 5. To a CH<sub>2</sub>Cl<sub>2</sub> solution (40 mL) of 1 (120.0 mg, 0.23 mmol) was added a pyridine solution (2 mL) of OsO<sub>4</sub> (71.0 mg, 0.28 mmol), and the resulting mixture was stirred for 24 h under nitrogen. Methanol (10 mL) was added to the reaction mixture for quenching, and H<sub>2</sub>S gas was bubbled. After filtration to remove OsS<sub>4</sub>, the CH<sub>2</sub>Cl<sub>2</sub> solution was evaporated to dryness. The residue was purified on FCC to afford 1 (CH<sub>2</sub>Cl<sub>2</sub>, 28.2 mg, recovered in 24% yield), 3 (1–2% Et<sub>2</sub>O/CH<sub>2</sub>Cl<sub>2</sub>, 32.0 mg, 25% yield), and 5 (3–4% Et<sub>2</sub>O/CH<sub>2</sub>Cl<sub>2</sub>, 39.1 mg, 31% yield) as pure forms. Spectral data for 3 and 5 were as follows.

**Data for 3**:  $\lambda_{max}$ (CH<sub>2</sub>Cl<sub>2</sub>)/nm 637 (relative intensity 0.16), 585 (0.02), 526 (0.02), 498 (0.06), 395 (1.00); <sup>1</sup>H NMR  $(CDCl_3) \delta =$ 9.54 (1H, s, 10-H), 8.89 (1H, s, 5-H), 8.83 (1H, s, 20-H), 4.88 (2H, m, 131-CH2), 3.93-3.81 (6H, m, 7-, 8-, 12-CH2), 3.81-3.70 (4H, m, 13-, 18-CH<sub>2</sub>), 3.66 (2H, m, 17-CH<sub>2</sub>), 3.56, 3.26 (each 1H, br s, 2-, 3-OH), 2.57 (2H, q, J = 7 Hz, 2-CH<sub>2</sub>), 2.52, 2.43 (each 1H, dq, J = 14, 7 Hz, 3-CH<sub>2</sub>), 1.84–1.78 (6H, m, 8<sup>1</sup>-, 12<sup>1</sup>-CH<sub>3</sub>), 1.76 (3H, t, J = 7 Hz, 7<sup>1</sup>-CH<sub>3</sub>), 1.73 (3H, t, J = 7 Hz, 18<sup>1</sup>-CH<sub>3</sub>), 1.59 (3H, t, J = 7 Hz,  $17^{1}$ -CH<sub>3</sub>), 1.03 (3H, t, J = 7 Hz,  $2^{1}$ -CH<sub>3</sub>), 0.85 (3H, t, J = 7 Hz,  $3^{1}$ -CH<sub>3</sub>), -1.57, -2.41 (each 1H, br s, NH × 2); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  = 164.7, 161.9, 157.8, 157.5, 149.4, 139.3, 138.0, 137.6, 135.73, 135.70, 135.2, 134.4, 134.2, 129.1, 121.3, 86.3, 85.3 (C1, C2, C3, C4, C6, C7, C8, C9, C11, C12, C13, C14, C15, C16, C17, C18, C19), 99.0 (C10), 91.4 (C5), 90.8 (C20), 37.4  $(C13^2)$ , 28.4  $(C3^1)$ , 28.0  $(C2^1)$ , 24.2  $(C13^1)$ , 20.7, 20.0, 19.3, 19.2, 18.9 (C7<sup>1</sup>, C8<sup>1</sup>, C12<sup>1</sup>, C17<sup>1</sup>, C18<sup>1</sup>), 18.3, 18.2, 18.0, 17.5, 15.4 (C7<sup>2</sup>, C8<sup>2</sup>, C12<sup>2</sup>, C17<sup>2</sup>, C18<sup>2</sup>), 8.5 (C3<sup>2</sup>), 8.3 (C2<sup>2</sup>); HRMS (FAB) *m*/*z* 566.3617 (M<sup>+</sup>), calcd for C<sub>36</sub>H<sub>46</sub>N<sub>4</sub>O<sub>2</sub> 566.3621.

**Data for 5**:  $\lambda_{max}$ (CH<sub>2</sub>Cl<sub>2</sub>)/nm 654 (relative intensity 0.26), 601 (0.02), 526 (0.02), 502 (0.07), 400 (1.00); <sup>1</sup>H NMR  $(CDCl_3) \delta =$ 9.56 (1H, s, 5-H), 9.38 (1H, s, 20-H), 8.79 (1H, s, 10-H), 4.48-4.40 (2H, m, 13<sup>1</sup>-CH<sub>2</sub>), 3.92-3.70 (8H, m, 2-, 3-, 7-, 8-CH<sub>2</sub>), 3.62-3.51, 3.46-3.38 (3H + 1H, m, 17-, 18-CH<sub>2</sub>), 2.89-2.81, 2.33-2.25 (each 1H, m, 13-CH<sub>2</sub>), 2.00-1.85 (2H, m, 12-CH<sub>2</sub>), 1.79, 1.76 (each 3H, t, J = 7 Hz,  $3^{1}$ -,  $7^{1}$ -CH<sub>3</sub>) 1.73 (3H, t, J = 7 Hz,  $8^{1}$ -CH<sub>3</sub>), 1.72 (3H, t, J = 7 Hz, 2<sup>1</sup>-CH<sub>3</sub>), 1.67 (3H, t, J = 7 Hz, 18<sup>1</sup>-CH<sub>3</sub>), 1.53 (3H, t, J = 7 Hz,  $17^{1}$ -CH<sub>3</sub>), 0.65 (3H, t, J = 7 Hz,  $12^{1}$ -CH<sub>3</sub>), -2.01, -2.65 (each 1H, br s, NH  $\times$  2); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  = 171.9 (C11), 166.9 (C14), 151.1, 149.7, 142.7, 139.3, 133.1 (C1, C3, C4, C6, C7), 143.3 (C2), 140.4 (C18), 138.6 (C9), 135.3 (C8), 134.1 (C16), 133.5 (C17), 131.1 (C19), 105.3 (C15), 99.3 (C20), 98.6 (C5), 93.3 (C10), 88.3 (C13), 86.9 (C12), 34.9 (C13<sup>2</sup>), 31.8 (C13<sup>1</sup>), 29.8 (C12<sup>1</sup>), 19.7 (C2<sup>1</sup>), 19.5 (C17<sup>1</sup>), 19.3, 18.6, 18.5, 18.2, 17.9 (C3<sup>1</sup>, C7<sup>1</sup>, C2<sup>2</sup>, C3<sup>2</sup>, C7<sup>2</sup>, C8<sup>2</sup>, C18<sup>2</sup>, two carbon signals which overlapped the others), 19.1 (C81), 18.8 (C181), 17.5 (C172), 8.1 (C12<sup>2</sup>); HRMS (FAB) m/z 566.3632 (M<sup>+</sup>), calcd for C<sub>36</sub>H<sub>46</sub>N<sub>4</sub>O<sub>2</sub> 566.3621.

Synthesis of 2/3-(1-Hydroxyethyl)porphyrins 7. To a 1,4dioxane solution (10 mL) of 3 (9.8 mg, 0.017 mmol) was added 10% aq HCl (3 mL), and the resulting mixture was stirred at 50 °C for 1 h under nitrogen. The reaction mixture was diluted with water and extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was washed with water twice, dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated to dryness. The residue was purified by FCC to give 7 (3% Et<sub>2</sub>O/CH<sub>2</sub>Cl<sub>2</sub>). The secondary alcohol 7 was purified by recrystallization from CH<sub>2</sub>Cl<sub>2</sub>/hexane as a red solid (6.9 mg, 73%, regioisomeric ratio 2:1):  $\lambda_{max}$ (CH<sub>2</sub>Cl<sub>2</sub>)/nm 617 (relative intensity 0.07), 564 (0.08), 537 (0.07), 502 (0.14), 403 (1.00); <sup>1</sup>H NMR (major/minor, CDCl<sub>3</sub>)  $\delta = 10.66/10.60$ , 10.05/10.10, 10.02 (each 1H, s, 5-, 10-, 20-H), 6.54–6.47 (1H, m, 2- or 3-CH), 5.48–5.43 (2H, m, 13<sup>1</sup>-CH<sub>2</sub>), 4.23–4.03 (14H, m, 2- or 3-, 7-, 8-, 12-, 13-, 17-, 18-CH<sub>2</sub>), 2.80 (1H, br s, 2<sup>1</sup>- or 3<sup>1</sup>-OH), 2.35–2.31 (2H, m, 2<sup>1</sup>- or 3<sup>1</sup>-CH<sub>3</sub>), 2.18, 1.97–1.90, 1.88, 1.85–1.80 (3H + 9H + 3H + 3H, m, 2<sup>1</sup>- or 3<sup>1</sup>-, 7<sup>1</sup>-, 8<sup>1</sup>-, 12<sup>1</sup>-, 17<sup>1</sup>-, 18<sup>1</sup>-CH<sub>3</sub>), -3.04, -3.80 (each 1H, br s, NH × 2); HRMS (FAB) m/z 548.3527 (M<sup>+</sup>), calcd for C<sub>36</sub>H<sub>44</sub>N<sub>4</sub>O 548.3515.

Synthesis of 2/3-Acetylporphyrin 8. To a CH<sub>2</sub>Cl<sub>2</sub> solution (10 mL) of regioisomeric 7 (5.6 mg, 0.010 mmol) was added NMO (9.6 mg, 0.082 mmol), and the resulting solution was stirred under nitrogen. After 5 min of stirring, TPAP (4.7 mg, 0.013 mmol) was added to the solution, and the resulting mixture was stirred for 1 h under nitrogen. The reaction mixture was passed through FCC to remove TPAP and NMO, and 8 was eluted later with CH<sub>2</sub>Cl<sub>2</sub>. Recrystallization from CH<sub>2</sub>Cl<sub>2</sub>/methanol gave 8 as a pure form (3.5 mg, 63%):  $\lambda_{\text{max}}$ (CH<sub>2</sub>Cl<sub>2</sub>)/nm 621 (relative intensity 0.05), 572 (0.08), 550 (0.08), 511 (0.11), 411 (1.00); <sup>1</sup>H NMR (major/minor, CDCl<sub>3</sub>)  $\delta = 10.73/10.66$ , 10.02/10.17, 9.99/9.97 (each 1H, s, 5-, 10-, 20-H), 5.45-5.39 (2H, m, 13<sup>1</sup>-CH<sub>2</sub>), 4.41-4.36, 4.21-4.08 (2H + 12H, m, 2- or 3-, 7-, 8-, 12-, 13-, 17-, 18-CH<sub>2</sub>), 3.36 (3H, s, 2- or 3-COCH<sub>3</sub>), 2.03–1.98, 1.97–1.90, 1.84–1.79 (6H + 9H+ 3H, m, 2<sup>1</sup>- or 3<sup>1</sup>-, 7<sup>1</sup>-, 8<sup>1</sup>-, 12<sup>1</sup>-, 17<sup>1</sup>-, 18<sup>1</sup>-CH<sub>3</sub>), -2.88/-2.90, -3.71/-3.60 (each 1H, br s, NH  $\times$  2); HRMS (FAB) m/z 546.3352  $(M^+)$ , calcd for C<sub>36</sub>H<sub>42</sub>N<sub>4</sub>O 546.3359.

**Synthesis of 13<sup>1</sup>-Hydroxyporphyrin 9.** Similar to the dehydration of **3**, a 1,4-dioxane solution (30 mL) of **5** (32.0 mg, 0.056 mmol) was treated with 6% aq HCl (4 mL). After the workup procedure, the residue was purified by FCC to give **2** (CH<sub>2</sub>Cl<sub>2</sub>) and **9** (2% Et<sub>2</sub>O/CH<sub>2</sub>Cl<sub>2</sub>). The secondary alcohol **9** was purified by recrystallization from CH<sub>2</sub>Cl<sub>2</sub>/hexane as a purple solid (23.2 mg, 75%):  $\lambda_{max}$ (CH<sub>2</sub>Cl<sub>2</sub>)/nm 618 (relative intensity 0.02), 565 (0.03), 503 (0.06), 405 (1.00); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  = 10.05, 10.04 (2H + 1H, s, 5-, 10-, 20-H), 6.48 (1H, m, 13-CH), 5.97-5.89, 5.26-5.18 (each 1H, m, 13<sup>1</sup>-CH<sub>2</sub>), 4.28-4.12, 4.09-3.98 (8H + 6H, m, 2-, 3-, 7-, 8-, 12-, 17-, 18-CH<sub>2</sub>), 2.38 (1H, br s, 13<sup>1</sup>-OH), 2.05 (3H, t, *J* = 7 Hz, 12<sup>1</sup>-CH<sub>3</sub>), 1.94, 1.89 (9H + 6H, t, *J* = 7 Hz, 2<sup>1</sup>-, 3<sup>1</sup>-, 7<sup>1</sup>-, 8<sup>1</sup>-, 18<sup>1</sup>-CH<sub>3</sub>), 1.81 (3H, t, *J* = 7 Hz, 17<sup>1</sup>-CH<sub>3</sub>), -2.89, -3.72 (each 1H, br s, NH × 2); HRMS (FAB) *m*/*z* 548.3501 (M<sup>+</sup>), calcd for C<sub>36</sub>H<sub>44</sub>N<sub>4</sub>O 548.3515.

**Synthesis of 13<sup>1</sup>-Oxoporphyrin 2.** Similar to the oxidation of 7, a CH<sub>2</sub>Cl<sub>2</sub> solution (20 mL) of **9** (20.1 mg, 0.037 mmol) was treated with NMO (50.7 mg, 0.43 mmol) and TPAP (25.4 mg, 0.072 mmol) followed by FCC (CH<sub>2</sub>Cl<sub>2</sub>) and recrystallization (CH<sub>2</sub>Cl<sub>2</sub>/ methanol), affording the desired **2** in a pure form (13.5 mg, 67%):  $\lambda_{max}$ (CH<sub>2</sub>Cl<sub>2</sub>)/nm 637 (relative intensity 0.02), 586 (0.06), 563 (0.10), 521 (0.06), 418 (1.00); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  = 10.09, 9.90, 9.81 (each 1H, s, 5-, 10-, 20-H), 5.83 (2H, s, 13<sup>1</sup>-CH<sub>2</sub>), 4.30, 4.09, 4.08, 4.00, 3.96, 3.95, 3.88 (each 2H, q, *J* = 7 Hz, 2-, 3-, 7-, 8-, 12-, 17-, 18-CH<sub>2</sub>), 2.06, 1.94–1.84, 1.73 (3H + 15H + 3H, t, *J* = 7 Hz, 2<sup>1</sup>-, 3<sup>1</sup>-, 7<sup>1</sup>-, 8<sup>1</sup>-, 12<sup>1</sup>-, 17<sup>1</sup>-, 18<sup>1</sup>-CH<sub>3</sub>), -2.46, -3.44 (each 1H, br s, NH × 2); HRMS (FAB) *m*/*z* 546.3367 (M<sup>+</sup>), calcd for C<sub>36</sub>H<sub>42</sub>N<sub>4</sub>O 546.3359. See also ref 3 for spectral data of **2**.

Acknowledgment. We thank Dr. Tomohiro Miyatake of Ryukoku University for his helpful assistance in measurement of the HRMS spectra. This work was partially supported by a Grant-in-Aid for Scientific Research (B) (No. 19350088) from JSPS, as well as by the "Academic Frontier" Project for Private Universities: matching fund subsidy from MEXT, 2003–2007.

Supporting Information Available: Preliminary X-ray crystal data for 1, preparation of  $13^2$ ,15-cyclized OEP 1, proposed reaction mechanism of  $5 \rightarrow 9$ , 1D/2D <sup>1</sup>H and <sup>13</sup>C NMR spectra of 3 and 5, 1D <sup>1</sup>H NMR spectra of 7 and 8, and 1D/2D <sup>1</sup>H NMR spectra of 9 and 2. This material is available free of charge via the Internet at http://pubs.acs.org.

JO071010M